Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Vaccines (Basel) ; 10(6)2022 May 27.
Article in English | MEDLINE | ID: covidwho-1869865

ABSTRACT

Single-dose COVID-19 vaccines, mostly mRNA-based vaccines, are shown to induce robust antibody responses in individuals who were previously infected with SARS-CoV-2, suggesting the sufficiency of a single dose for those individuals in countries with limited vaccine supply. However, these important data are limited to developed nations. We conducted a prospective longitudinal study among Ethiopian healthcare workers who received a ChAdOx1 nCoV-19 vaccine. We compared the geometric mean titers (GMTs) of the SARS-CoV-2 receptor-binding domain (RBD)-specific IgG antibodies in 39 SARS-CoV-2 naïve participants and 24 participants previously infected with SARS-CoV-2 (P.I.), who received two doses of ChAdOx1 nCoV-19 vaccine across the two post-vaccination time points (at 8 to 12 weeks post single dose and two dose vaccinations). We noted that the GMT (1632.16) in naïve participants at 8-12 weeks post first dose were comparable to the GMT (1674.94) observed in P.I. participants prior to vaccination. Interestingly, P.I. participants had significantly higher antibody titers compared to naïve participants, after both the first (GMT, 4913.50 vs. 1632.16) and second doses (GMT, 9804.60 vs. 6607.30). Taken together, our findings show that a single ChAdOx1 nCoV-19 dose in previously SARS-CoV-2 infected individuals elicits similar, if not higher, antibody responses to those of two-dose-vaccinated naïve individuals.

2.
Microbiol Resour Announc ; 10(38): e0072121, 2021 Sep 23.
Article in English | MEDLINE | ID: covidwho-1434905

ABSTRACT

Three complete severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from Ethiopian patients were compared with deposited global genomes. Two genomes belonged to genetic group 20A/B.1/GH, and the other belonged to genetic group 20A/B.1.480/GH. Enhancing genomic capacity is important to investigate the transmission and to monitor the evolution and mutational patterns of SARS-CoV-2 in this country.

3.
PLoS One ; 16(2): e0247767, 2021.
Article in English | MEDLINE | ID: covidwho-1105822

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has revealed the global public health importance of robust diagnostic testing. To overcome the challenge of nucleic acid (NA) extraction and testing kit availability, an efficient method is urgently needed. OBJECTIVES: To establish an efficient, time and resource-saving and cost-effective methods, and to propose an ad hoc pooling approach for mass screening of SARS-CoV-2. METHODS: We evaluated pooling approach on both direct clinical and NA samples. The standard reverse transcriptase polymerase chain reaction (RT-PCR) test of the SARS CoV-2 was employed targeting the nucleocapsid (N) and open reading frame (ORF1ab) genomic region of the virus. The experimental pools were created using SARS CoV-2 positive clinical samples and extracted RNA spiked with up to 9 negative samples. For the direct clinical samples viral NA was extracted from each pool to a final extraction volume of 200µL, and subsequently both samples tested using the SARS CoV-2 RT-PCR assay. RESULTS: We found that a single positive sample can be amplified and detected in pools of up to 7 samples depending on the cycle threshold (Ct) value of the original sample, corresponding to high, and low SARS CoV-2 viral copies per reaction. However, to minimize false negativity of the assay with pooling strategies and with unknown false negativity rate of the assay under validation, we recommend pooling of 4/5 in 1 using the standard protocols of the assay, reagents and equipment. The predictive algorithm indicated a pooling ratio of 5 in 1 was expected to retain accuracy of the test irrespective of the Ct value samples spiked, and result in a 137% increase in testing efficiency. CONCLUSIONS: The approaches showed its concept in easily customized and resource-saving manner and would allow expanding of current screening capacities and enable the expansion of detection in the community. We recommend clinical sample pooling of 4 or 5 in 1. However, we don't advise pooling of clinical samples when disease prevalence is greater than 7%; particularly when sample size is large.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Algorithms , COVID-19/virology , COVID-19 Nucleic Acid Testing/economics , Humans , Mass Screening/economics , Mass Screening/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity , Specimen Handling/economics , Specimen Handling/methods
4.
Pan Afr Med J ; 38: 6, 2021.
Article in English | MEDLINE | ID: covidwho-1050747

ABSTRACT

Novel coronavirus disease (COVID-19) is spreading rapidly and creating a huge economic, social and public health challenge worldwide. Although currently an effective vaccine is ready, its distribution is limited, and hence the only currently available lever to reduce transmission is to identify and isolate individuals who are contagious. Thus, testing for SARS CoV-2 has a paramount importance. However, testing in many African countries including Ethiopia has multidimensional growing challenges. Here, we tried to identify, categorize and summarize the challenges of COVID-19 testing in Africa from Ethiopian experience.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Africa , Ethiopia , Humans
SELECTION OF CITATIONS
SEARCH DETAIL